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Abstract 

In the last decade thermophotovoltaic (TPV) generator has gained an increasing attention as cogeneration system for the 
distributed generation sector. Nevertheless, these systems are not fully developed and studied: several aspects need to be further 
investigated and completely understood. 
The aim of this study is to give a complete overview and the status of the art of thermophotovoltaic generation considering both 
the research developments and the experiences field. More in details, in this study, the characteristics of a TPV generator are 
analyzed with a particular attention to the physical relationships which govern the behavior of its main components. Moreover, 
the current technologies regarding the combustor, the emitter, the optical filter and the photovoltaic cells are investigated by 
taking into account both the role of each component and also their integration in the whole system. Finally, a critical review of 
the realized prototypes is presented and discussed. 
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1. Introduction 

A Thermophotovoltaic generator (TPV) is an innovative system able to convert the radiant energy of a 
combustion into electrical energy. This conversion is realized by using photovoltaic cells. A scheme of a TPV is 
presented in Figure 1, in which the main components and energy flows are highlighted. 

A TPV generator consists of a heat source, an emitter (EM), a filter (F) and an array of photovoltaic cells (PV); 
the combustion air pre-heating system (HX-A) which uses the combustion products is also sketched in Figure 1. The 
thermal production of the TPV is realized by the heat exchangers HX-PV and HX-CP, which respectively recover 
the heat from the cooling of PV cells and the exhaust combustion products. 

The main advantages of this energy system can be found in the (i) high fuel utilization factor (close to the unity 
thanks to the recovery of the most of the thermal losses, making it possible to use the TPV system as a combined 
heat and power system), (ii) low produced noise levels (due to the absence of moving parts), (iii) easy maintenance 
(similar to a common domestic boiler) and (iv) great fuel flexibility. In fact, with this regard, it can be observed that 
the heat source of a TPV system can be provided by various fuel typologies such as fossil fuels (natural gas, oil, 
coke, etc.) municipal solid wastes, nuclear fuels, etc; concentrated solar radiation can also be used as a TPV heat 
source [1-3]. A TPV system usually allows very low pollutant emissions (e.g. CO and NOx), since it is often 
coupled with combustion devices such as domestic boilers.  

The main use of a TPV generator can be in the distributed combined heat and power generation, but its 
application in the automotive sector in case of hybrid vehicles [4], glass [5] or other high temperatures industries [6] 
has also been analyzed in literature. The TPV system has been proposed for portable generators [7, 8], co-generation 
systems [9], combined cycle power plants, solar power plants [10], grid connected [11] or independent equipment 
[12]. Other studies show the integration of TPV generator with thermoelectric systems [13] or with Organic Rankine 
Cycles [14, 15]. Further studies were developed in military [16-17] and space [18, 19] sectors. 

Even if the first studies [20, 21] about thermophotovoltaic conversion were carried out during the early years of 
1960, it was only in the last decade that the research about TPV generation accelerated markedly. The electrical 
efficiency of the realized prototypes [19, 22-27] ranges from about 0.6 % to slightly less than 11.0 %. Moreover, 
electrical efficiencies close to 24 % are predicted in literature [28-30], making TPV system very attractive for 
cogeneration. An overview about the realized TPV generator prototypes will be developed in this work. 

2. Electrical performance of a TPV generator 

The power balance of a TPV generator is presented in Figure 2. The introduced power with fuel (Pin), unless the 
thermal losses (Pfuel,loss) of the combustion process, is converted by the emitter and by the optical filter into radiant 
power (P’GAP = PRAD – Pback) and thermal power discharged with the gases (QTH,gas in Figure 2 and section F2 in 
Figure 1). A fraction of the radiant power (P’GAP), which is in the useful range of wavelengths for the photovoltaic 
conversion (due to the optical filter selection), can be lost due to the absorption of the optical filter (Pabs, even if this 
term can be usually neglected) and for the view factor between filter and PV cells (Ploss this term can be reduced 
achieving values very close to zero with a optimal design of the system geometry). The radiant power incident on 
the photovoltaic cells (PU = PGAP – Ploss = P’GAP – Ploss – Pabs) is then converted into continuous current (Pel,dc) and 
thermal power (Qth,pv); except for the losses (Pel,loss) due to the inverter (INV in Figure 1) efficiency, the electrical 
power (Pel,ac) can be obtained from the system. On the other hand, the enthalpy content of the gases at the emitter 
exit (QTH,gas  in Figure 2 and section F2 in Figure 1) can be partially recovered (QTH,cp ) while the remaining part is 
discharged to the ambient (Qth,d). 

The electrical efficiency of a TPV generator can be written as: 

acdcPVVFFGAPRADCCTPVEL /,  

where: CC: combustion efficiency; RAD: radiant efficiency; GAP: spectral efficiency; F: filter efficiency; VF: 
view factor efficiency; PV: cell efficiency dc/ac: inverter efficiency. 
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On the following of this section each of the previous partial efficiencies will be separately analyzed and 
discussed. 
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Fig. 1.  Schematics of a TPV generator Fig. 2.  Power balance of a TPV generator 

2.1. Combustion efficiency 

With reference to Figure 2, the combustion efficiency can be expressed as the ratio between the useful introduced 
power (Pfuel) and the whole power introduced with fuel (Pin): 

LHVm
P

P
P

fuel

fuel

in

fuel
CC  

being fuelm  and LHV respectively the fuel mass flow rate and its Lower Heating Value (depending on the type of 
fuel). 

From Figure 2, it can be observed that the useful introduced power (Pfuel) can be only converted into radiant 
power (P’GAP = PRAD – Pback) or discharged with the combustion products (QTH,gas). It results: 

gasTHGAPfuel QPP ,
'  

This last equation represents the power balance of combustor, emitter and air pre-heater exchanger and allows to 
introduce the important role recovered by the air pre-heater for the thermophotovoltaic conversion. In facts, the 
reduction of combustion products temperature (section F2 in Figure 1) and then the increase of the air temperature 
upstream of the combustor (section A2 in Figure 1) allows to enhance the emitted radiant power; this evidence is 
also confirmed in [31]. The importance of air pre-heater has been also highlighted in Seal et al [32], and Christ et al 
[33]. In particular, in Colangelo et al [29] the air pre-heater was obtained by adopting a rotary heat exchanger with a 
ceramic material which is lighter than metal and with a greater heat capacity that is relevant to store an high value of 
energy; with this device an heat exchanger efficiency greater than 75% is achieved. 

2.2. Radiant efficiency 

The radiant efficiency can be expressed, with reference to Figure 2, as the ratio between the radiant power from 
the emitter (PRAD) and the introduced power (Pfuel) into the system. It follows: 

LHVm
Sp

P
P

fuelCC

emRAD

fuel

RAD
RAD  

The radiant power is a function of the radiation power density pRAD and of the emitter surface Sem. The radiation 
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efficiency is strictly influenced by several factors: the type of emitter, its dimension and thickness, the combustion 
mode, the firing rate and, as already seen, the pre-heating of the air.  

It can be observed that the radiant energy density can be up to 500 kW/m2 (by integrating the spectrum of a black 
body at 1600 °C). This last value is very high considering that the radiant energy density of the sun is equal to 1 
kW/m2 at AM1.5 condition. The achievement of high temperature is a very important aspect since, according to 
Planck’s law, radiation power density scales with temperature to the fourth power. Therefore, most heat sources 
used in TPV systems are based on combustion systems; various types of premixed and non-premixed combustors 
[34-36] or radiant tube burner [37, 38] have been developed in the last years. It should be considered that the aim 
toward high temperatures burner is limited by the NOx production. Anyway, recent studies [39, 40] about the 
emitter surface have shown that there exist an optimal value of emitter surface which allows the maximization of 
radiant efficiency and of emitter temperature been equal the boundary conditions (such as introduced power with 
fuel, emitter material, etc.) and the adopted equipment of the thermophotovoltaic generator. 

The radiant energy from the emitter has to be characterized by an emission spectrum suitable for the adopted 
photovoltaic cells; in fact only the photon energy in a narrow band above the bandgap of the photovoltaic cells can 
be converted into electrical energy. It follows that selective emission is required; in order to achieve this goal a 
selective emitter [39-49] or a broadband emitter with a filter can be used. In the first case the emitter is made with 
materials such as rare earth oxides which are characterized by an emission spectrum centered on specific 
wavelength; in the second case, many of the emitted photons, due to their lower energy on the respect of the 
bandgap of photovoltaic cells result unusable. It is imperative to send these photons back to the radiator in order to 
conserve heat and to reduce the fuel consumption needed to achieve the required emitter temperatures. 

It should be observed that the material used for the emitter needs to have specific characteristics such as (i) 
thermal stability, (ii) corrosion resistance, (iii) shock resistance, (iv) high thermal conductivity, etc. Obviously, the 
high temperatures which are required by the TPV system implies that the emitter’s material melting point should be 
as high as possible. Further, the emitter needs to be thermally stable in the selected atmosphere (i.e. air and/or 
combustion products) and high corrosion resistant; as example graphite (C) has a high-thermal conductivity and a 
good thermal shock but in an oxidizing atmosphere cannot overcome 400 °C [50]; on the contrary in non-oxidizing 
atmosphere can operate up to 3000 °C. The adoption of coatings can improve the corrosion resistance of some 
materials or a shield, usually made of quartz, can be adopted to protect the emitter from the environment. A high 
value of thermal conductivity is required in order to have a uniform temperature distribution of the emitter. Lower 
values of thermal conductivities causes a large temperature gradient inside the emitter which drastically decreases its 
efficiency. Anyway, in case of porous emitter this factor may not be important. Thermal shock resistance is also 
very important especially in TPV generators with frequent on-off cycles. The sudden change in emitter temperature 
can cause material failure. 

High temperature broadband emitters [51-57] can be divided into (i) oxide based or (ii) non-oxide based 
ceramics. Among oxide based ceramics, alumina (Al2O3) and zirconia (ZrO2) show a good stability in oxidizing 
atmosphere and can be used respectively up to 1900 °C of temperature or more considering that their fusion 
temperatures are respectively 2050 °C and 2600 °C. Others oxide based ceramics are magnesia (MgO), silica (SiO2), 
beryllia (BeO), hafnia (HfO2), thoria (ThO2) and yttria (Y2O3) [51]. Anyway, often the major difficult related to the 
adoption of these materials is the low thermal shock resistance and/or the low emissivity. 

A widely used broadband emitter is silicon carbide (SiC) which can operate up to 1650 °C. It has an emissivity 
close to 0.90 [56] and very high melting point. Ceramic composites such as SiC/Si and SiC coated ceramic 
composites fit all the requirements for a TPV emitter [57]. 

2.3. Spectral efficiency 

The spectral efficiency is the ratio between the whole radiation from the emitter (PRAD) and the portion which 
pass through the filter (P’GAP): 

RAD

GAP
GAP P

P '
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The spectral efficiency depends on the adopted filter, used to match the emitter spectral emission to the PV cell; 
this means that the filter should be ideally able to block all the photons with energy lower than the PV cell bandgap 
and pass the photons with higher energy. With a simple approach, the P’GAP can be estimated by integrating the 
radiant intensity I( ;Tem) in the range of wavelengths (from 0 to GAP) which passes thought the filter and then can 
be converted by the photovoltaic cells: 

GAPGAP

 d
Tk

hccSd  TISP
emB

emememGAP
0

1

5

2

0

' 1exp2;  

Many types of filters have been developed such as plasma filters, 1-D photonic bandgap filters, 2-D photonic 
bandgap filters, 3-D photonic bandgap filters, combination of plasma filter and 1-D photonic bandgap filter, 
dielectric stacks or back-surface reflectors [58-69]. 

3-D photonic bandgap filters are characterized by an omnidirectional photonic band gaps which means that the 
propagation of photons is prohibited for arbitrary polarization in any direction [69]; obviously, this characteristic is 
highly appreciated for TPV generation. Anyway, it should be observed that a well designed 1-D photonic bandgap 
filter can completely reflect polarized photons at all incident angles showing omnidirectional photonic band gaps 
[65, 68]. On this regards, filters based on multiple layer of SiO2 [62-65] have shown promising results for TPV 
applications. 

2.4. Filter efficiency 

The filter efficiency takes into account the fraction of radiant power which is absorbed by the filter (Pabs) and 
which is lost. The filter efficiency can be written as: 

'
GAP

GAP
F P

P  

being the balance of the filter (PRAD – Pback = P’GAP = PGAP + Pabs). Usually the term Pabs can be neglected with a 
properly design of the filter and then it is possible to assume  [65]. 

2.5. View factor efficiency 

The view factor efficiency is related to the ratio between the radiation (PU) which is incident on the photovoltaic 
cells and the value (PGAP). 

GAP

U
VF P

P
 

The value of view factor can be calculated according to the geometry and to the distance among the surfaces 
which are involved in the irradiation phenomenon. Many formulations of radiation view factors can be found in 
literature on the basis of the TPV geometry [71-76]. 

2.6. PV cells efficiency 

The cells efficiency represents the ratio between the electrical power output (Pel,dc) and the incident power on the 
cell (PU); the maximum electrical power produced by a photovoltaic cell can be expressed as function of short-
circuit current (JSC) open-circuit voltage (VOC) and Fill Factor (FF). The radiation efficiency is influenced by many 
factors such as the cell material, the emitter temperature and the radiation intensity. It can be expressed as follows: 
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Converters for TPV are very similar to standard solar cells such as Si and high efficiency GaAs but made of 
semiconductor materials with lower bandgap, to get a better spectral matching with the emitter radiation.  

A fundamental parameter in order to estimate the conversion efficiency of a PV cell is the external quantum 
efficiency  which can be defined as the probability that a photon of wavelength  will be absorbed by the 
cell, generating an electron that will be collected at the terminals: it considers the reflection and absorption of 
incident photons and the generation/collection of minority carriers, so it describes the behavior of the p-n junction in 
great detail.  

The actual value of  produced by the cell can be calculated from EQE( ) of the PV cell and the incident 
photon flow ( ): 

dEQEeJ
GAP

SC
0

 

EQE( ) were measured for different semiconductors of choice for TPV and typical behaviours are reported in 
Figure 6 [84-88]. It could be noted that most of the materials used for the TPV cells have high EQE in a large region 
from near the bandgap to lower wavelength. The EQE drops to very low value for photon wavelength of about 1000 
nm, but it should be considered that in this region a standard TPV emitter at 1200-1800 °C has a very low photon 
emission. For this reason, the TPV cells are usually able to convert with a very high efficiency the part of the black 
body radiation that arrives at their surface, while the photons with energy lower than the bandgap, not being 
absorbed, can be effectively redirected towards the emitter with the use of appropriate selective filters. This 
particular characteristic, not possible for solar PV, permits TPV cells to potentially reach very high conversion 
efficiencies, because the incident radiation could be efficiently coupled to the region where the cell EQE is 
maximum. 

2.7. Inverter efficiency 

Finally, the inverter efficiency allows the calculation of the final electrical output of the system. It results: 

dcel

acel
acdc P

P

,

,
/  

Useful information about the efficiency of inverter adopted with PV cells can be found in [89]. In particular it can 
be observed that the use of transformer usually reduces the conversion efficiency from direct current to alternate 
current.  

3. TPV PROTOTYPES 

Various TPV prototypes have been realized in the last years; the most relevant research groups on this topic are 
the CANMET Energy Technology Centre, the Paul Scherrer Institut, and the JX Crystals Inc [90-92]. The main 
results show electrical efficiency from 0.04% up to more than 24% [90-92]; with regards to the produced electrical 
power, values ranging from less than 10 W to about 3 kW are reported in literature [90-92]. In Figure 3 (a), the 
electrical efficiency of the realized prototypes versus the electrical power output is presented [90-92]; in Figure 3 (b) 
the same performance vales of the realized prototypes are compared to conventional CHP systems. In particular, 
from this last figure it can be observed that TPV can cover the field of electrical power output lower than 1-2 kW 
showing a conversion efficiency close to 10%. 
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All the data available in literature regarding the TPV generator are presented in Table 1, for all the main 
components of the TPV unit (burner, emitter, filter, cells). Table 2 reports the type of fuel, the emitter material, its 
structure, the surface temperature and the emitter radiation efficiency, the presence or absence of the filter and its 
material, the type of cells and their efficiency at Standard Test Condition (STC - AM 1.5, 100 mW/cm2). The last 
column states whether the performance comes from an experimental measurement or if it is predicted by using a 
numerical model. Therefore, Table 1 provides a synoptic view of the state-of-the-art technological level of TPV 
systems and also envisions possible future pathways for research and development of TPV systems.  

Tab. 1.  Summary of TPV prototypes  

Burner Emitter Type of 
emitter 

Surface 
emitter 
temp. 

ηrad Filter Cells STC eff. Pfuel Pel ηel 
Type of 
result 

   [K] [%]   [%] [W] [W] [%]  

butane gas Yb2O3 fibrous 
mantle   no Si 10.4 305 0.11 0.04 EXP 

butane gas Er2O3 fibrous 
mantle   no GaSb  305 0.25 0.08 EXP 

hydrogen SiC  1265  no GaSb  130 0.74 0.57 PRED 

 Yb2O3-coated 
Al2O3 

foam 
ceramic    Si  2000 14 0.70 EXP 

 Yb2O3     Si  25000 190 0.76 EXP 
methane Yb2O3    quartz tube Si 16.0 20000 164 0.82 EXP 

hydrogen SiC  1265  no GaInAs
Sb  130 1.2 0.91 PRED 

methane Yb2O3  1800 24.0 quartz tube Si 16.0 12000 120 1.00 EXP 

butane Yb2O3 spherical 
emitter    Si  1350 15 1.13 EXP 

 Yb2O3 fibrous 
mantle    Si  2000 30 1.50 EXP 

butane Yb2O3    glass tube Si 16.0 1905 29 1.52 EXP 
 Yb2O3     Si  5625 90 1.60 EXP 

 Sic coated fiber 
mat  20.4  GaSb 20.0 6120 102 1.67 EXP 

butane Yb2O3    glass tube Si 16.0 1905 34 1.80 PRED 

 Sic honeycomb 
plaque  22.9  GaSb 20.0 6120 119 1.94 EXP 

 Yb2O3 fibrous 
mantle   TCO 

CuInSe
2 (CIS)     
thin-
film 

 2000 40 2.00 PRED 

 SiC porous foam  26.7  GaSb 20.0 6120 137 2.24 EXP 

hydrogen Co/Ni-doped MgO    no GaInAs
Sb  130 2.9 2.28 PRED 

butane Yb2O3 porous foam 1735  SnO2 film on 
quartz Si  1980 48 2.42 EXP 

butane Yb2O3    glass tube Si 21.1 1985 48 2.41 EXP 
butane Yb2O3    glass tube Si 21.1 1985 55 2.80 PRED 

 
(1) Yb2O3 fiber 

felt; (2) SiC-coated 
ceramic fiber mat 

Two emitters 
arranged 
in tandem 

 31.0  Si 
GaSb 

36.0 
20.0 1920 60 3.09 EXP 

hydrogen Co/Ni-doped MgO    no GaSb  126 4.4 3.48 PRED 
   2000     3778 170 4.50 EXP 

 SiC porous foam 1558 21.3 
coatings of SiO2 

and TiO3 on 
glass 

GaSb  8260 123 5.20 EXP 

   2100     4200 315 7.50 EXP 

 SiC    double quartz 
tube GaSb  14000 1120 8.00 PRED 

regenerative 
burner 

AR-coated 
tungsten (W) foil 

on Alumina 
   dielectric filters GaSb  606 66 10.90 EXP 

 
AR-coatet 

tungsten (W) foil 
on SiC 

 1525   GaSb  12200 1500 12.30 PRED 

diesel SiC-caoted ErAG  1523  quartz tube 
AlGaAs

/ 
GaAs 

 12157 2976 24.50 PRED 
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Fig. 3. (a) electric efficiency vs. electric power of TPV prototypes, (b) comparison of TPV performance to conventional system [92, 94] 

4. Concluding remarks 

The thermophotovoltaic conversion has gained more and more attention in the last decade. Nevertheless this field 
of the research is not yet completely understood. 

This paper wish to outline the current state-of-the-art of thermophotovoltaic generation under both the analytical 
and the experimental point of view. 

More in details, in this study a deeply investigation of all the analytical aspects which involve the 
thermophotovoltaic conversion is presented; each term which composes the conversion efficiency between the 
introduced power with fuel and the produced electrical output is investigated. All the components which compose a 
TPV generator are investigated in terms of adopted materials and engineering solutions. Further a comprehensive 
review of all the prototypes developed up to now is reported and analyzed. 
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